$R_{\rm int} = 0.097$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3a, 6a-Bis(ethoxycarbonyl)glycoluril (diethyl 2.5-dioxoperhydroimidazo-[4,5-d]imidazole-3a,6a-dicarboxylate)

Yu-Zhou Wang,^a* Zhi-Guo Wang^b and Lin Li^a

^aKey Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ^bSchool of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China Correspondence e-mail: yutian830@yahoo.com.cn

Received 30 October 2007; accepted 6 November 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.068; wR factor = 0.197; data-to-parameter ratio = 11.7.

The title compound, $C_{10}H_{14}N_4O_6$, crystallizes with two independent molecules in the asymmetric unit. An extensive network of $N-H \cdots O$ and $C-H \cdots O$ intermolecular hydrogen bonds stabilizes the crystal packing. One ethyl group is disordered over two positions; the site occupancy factors are 0.68 and 0.32.

Related literature

For related literature, see: Burnett et al. (2003); Chen et al. (2007); Himes et al. (1978); Hof et al. (2002); Isaacs & Witt (2002); Kim et al. (2000); Li et al. (1994); Moon et al. (2003); Rowan et al. (1999); Wang et al. (2006, 2007); Wu et al. (2002).

Experimental

Crystal data

C10H14N4O6 $M_{\rm r} = 286.25$ Orthorhombic, Pbca a = 15.7555 (13) Å b = 11.2726 (9) Å c = 28.742 (2) Å

Data collection

Bruker SMART 4K CCD areadetector diffractometer

Absorption correction: none 29774 measured reflections

V = 5104.7 (7) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.20$ mm

 $\mu = 0.12 \text{ mm}^{-1}$

T = 292 (2) K

Z = 16

4501 independent reflections 2784 reflections with $I > 2\sigma(I)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.068$	6 restraints
$wR(F^2) = 0.197$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
4501 reflections	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$
385 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdotsO2^i$	0.86	2.15	2.963 (3)	158
$N2-H2\cdots O7^{ii}$	0.86	2.10	2.927 (3)	162
N3-H3···O1 ⁱⁱⁱ	0.86	2.11	2.937 (3)	161
$N4-H4\cdots O8^{iv}$	0.86	2.21	2.879 (3)	134
$N5-H5\cdotsO1^{iv}$	0.86	2.22	2.870 (3)	133
$N6-H6\cdots O7^{v}$	0.86	2.09	2.925 (3)	164
$N7 - H7 \cdot \cdot \cdot O2^{ii}$	0.86	2.16	2.973 (3)	158
$N8-H8 \cdot \cdot \cdot O8^{vi}$	0.86	2.12	2.963 (3)	165
C16−H16C···O3 ^{vii}	0.96	2.51	3.087 (5)	119
$C10-H10B\cdots O11^{v}$	0.96	2.32	3.162 (5)	146

Symmetry codes: (i) $-x, y = \frac{1}{2}, -z = \frac{1}{2}$, (ii) $-x = \frac{1}{2}, y = \frac{1}{2}, z$; (iii) $-x, y = \frac{1}{2}, -z = \frac{1}{2}$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, z;$ (v) -x + 1, -y + 1, -z; (vi) -x + 1, -y, -z; (vii) $x + \frac{1}{2}, y, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 1997).

The authors are grateful to Central China Normal University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2340).

References

- Bruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, C. A., Lagona, J., Wu, A. X., Shaw, J. A., Coady, D., Fettinger, J. C., Day, A. I. & Isaacs, L. (2003). Tetrahedron, 59, 1961-1970.
- Chen, Y. F., She, N. F., Meng, X. G., Yin, G. D., Wu, A. X. & Isaacs, L. (2007). Org. Lett. 9, 1899-1902.
- Himes, V. L., Hubbard, C. R., Mighell, A. D. & Fatiadi, A. J.(1978). Acta Cryst. B34, 3102-3104.
- Hof, F., Craig, S. L., Nuckolls, C. & Rebek, J. Jr (2002). Angew. Chem. Int. Ed. 41, 1488-1508.
- Isaacs, L. & Witt, D. (2002). Angew. Chem. Int. Ed. 41, 1905-1907.
- Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc. 122, 540-541.
- Li, N., Maluendes, S., Blessing, R. H., Dupuis, M., Moss, G. R. & Detitta, G. T. (1994). J. Am. Chem. Soc. 116, 6494-6507.
- Moon, K., Chen, W. Z., Ren, T. & Kaifer, A. E. (2003). CrystEngComm, 5, 451-453
- Rowan, A. E., Elemans, J. A. A. W. & Nolte, R. J. M. (1999). Acc. Chem. Res. 32, 995-1006.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany,
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wang, Y.-Z., Gao, M. & Cao, L.-P. (2007). Acta Cryst. E63, 03419.
- Wang, Z. G., Zhou, B. H., Chen, Y. F., Yin, G. D., Li, Y. T., Wu, A. X. & Isaacs, L. (2006). J. Org. Chem. 71, 4502-4508.
- Wu, A. X., Fettinger, J. C. & Isaacs, L. (2002). Tetrahedron, 58, 9769-9777.

Acta Cryst. (2008). E64, o125 [doi:10.1107/81600536807056292]

30,60-Bis(ethoxycarbonyl)glycoluril (diethyl 2,5-dioxoperhydroimidazo[4,5-d]imidazole-3a,6a-dicarboxylate)

Y.-Z. Wang, Z.-G. Wang and L. Li

Comment

Glycoluril skeleton moiety (Fig. 3) is an important building block for both molecular and supramolecular chemistry. Its derivatives have been used as the basis for molecular capsules (Hof *et al.*, 2002), molecular clips (Rowan *et al.*, 1999), self-complementary facial amphiphiles (Isaacs *et al.*, 2002), and the cucurbit[*n*]uril (CB[*n*]) family (Kim *et al.*, 2000), and its utilization has been explored as a platform for studies of crystal engineering (Wang *et al.*, 2006; Chen *et al.*, 2007). However, relatively few crystal structures are known for glycoluril derivatives without N-substituents. The crystal structures of the reported glycoluril with different substituents exhibit two H-bonded types (Fig. 4). The mode A was found for (*R*=H) (Li *et al.*, 1994), (*R*=CH₃) (Himes *et al.*, 1978), (I, *R*=Ph) (Wu *et al.*, 2002), and so on, and the mode B was observed in the (*R*=Ph) (Moon *et al.*, 2003), (*R*=COO-n-C₃H₇) (Wang *et al.*, 2007). Herein, we report the crystal structure of the title compound (I), which exhibits the mode A of hydrogen bonding (Fig. 4).

The molecular structure of (I) (R=COOC₂H₅) is shown in Fig. 1. Its crystal structure exhibits the eight-membered rings H-bonding motifs (Fig. 4), which are entirely made up of N—H···O=C(imidazolone rings) (Table 1). The two-dimension hydrogen bonding network is shown in Fig. 2, In addition, intermolecular C10—H10B···O11, C16—H16C···O3 interactions (Table 1) contribute to the crystal structure stability.

Experimental

The title compound was synthesized according to literature procedure (Burnett *et al.*, 2003) in 62% isolated yield. Crystals appropriate for data collection were obtained by slow evaporation of CH₃OH solution at room temperature.

Refinement

One ethyl group (C5—C6) was treted as disordered over two orientations with the occupancies refined to 0.683 (15) / 0.317 (15). All H-atoms were positioned geometrically (C—H 0.96, 0.97 Å; N—H 0.86 Å) and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2-1.5U_{eq}$ (parent atom).

Figures

Fig. 1. The content of asymmetric unit of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoids. Atoms of the minor disorder components are omitted for clarity.

diethyl 2,5-dioxoperhydroimidazo[4,5-d]imidazole-3a,6a-dicarboxylate

Crystal data

$F_{000} = 2400$
$D_{\rm x} = 1.490 {\rm Mg} {\rm m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 2687 reflections
$\theta = 2.6 - 23.5^{\circ}$
$\mu = 0.12 \text{ mm}^{-1}$
T = 292 (2) K
Block, colourless
$0.30 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Bruker SMART 4K CCD area-detector diffractometer	2784 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.097$
Monochromator: graphite	$\theta_{\text{max}} = 25.0^{\circ}$

T = 292(2) K	$\theta_{\min} = 1.9^{\circ}$
φ and ω scans	$h = -18 \rightarrow 18$
Absorption correction: none	$k = -11 \rightarrow 13$
29774 measured reflections	$l = -34 \rightarrow 29$
4501 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.068$	H-atom parameters constrained
$wR(F^2) = 0.197$?
<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
4501 reflections	$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
385 parameters	$\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$
6 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.04208 (19)	0.0660 (3)	0.18565 (10)	0.0315 (8)	
C2	-0.0170 (2)	0.4006 (3)	0.18911 (10)	0.0340 (8)	
C3	0.0813 (2)	0.2558 (2)	0.21072 (10)	0.0304 (7)	
C4	0.1717 (2)	0.2877 (3)	0.22674 (12)	0.0458 (9)	
C5	0.3149 (3)	0.2426 (8)	0.2249 (3)	0.048 (2)	0.683 (15)
H5A	0.3278	0.2316	0.2576	0.058*	0.683 (15)
H5B	0.3233	0.3254	0.2170	0.058*	0.683 (15)
C6	0.3700 (4)	0.1644 (8)	0.1953 (4)	0.063 (3)	0.683 (15)
H6A	0.3601	0.0828	0.2033	0.095*	0.683 (15)
H6B	0.4286	0.1835	0.2007	0.095*	0.683 (15)
H6C	0.3566	0.1767	0.1631	0.095*	0.683 (15)
C5'	0.3127 (6)	0.169 (2)	0.2260 (7)	0.082 (7)	0.317 (15)
H5'1	0.3173	0.0833	0.2257	0.098*	0.317 (15)

H5'2	0 3278	0 1970	0 2569	0 098*	0.317 (15)
C6'	0.3725 (8)	0.1370 0.223(2)	0.1899 (9)	0.126(12)	0.317(15)
H6'1	0.3641	0.1839	0.1605	0.190*	0.317(15)
H6'2	0.4302	0.2122	0 1997	0.190*	0.317(15)
H6'3	0.3607	0.3059	0.1866	0.190*	0.317(15)
C7	0.0685 (2)	0 2544 (2)	0 15577 (10)	0.0314 (8)	0.017 (10)
C8	0.1431 (2)	0.2921 (3)	0.12516 (13)	0.0504 (10)	
C9	0.2477 (3)	0.4440 (4)	0.11294 (16)	0.0836 (15)	
H9A	0.2828	0.4932	0.1329	0.100*	
H9B	0.2830	0.3815	0.1001	0.100*	
C10	0.2119 (3)	0.5147 (4)	0.07577 (17)	0.0965 (17)	
H10A	0.1835	0.4638	0.0540	0.145*	
H10B	0.2565	0.5569	0.0601	0.145*	
H10C	0.1721	0.5704	0.0885	0.145*	
C11	0.4936 (2)	0.4078 (3)	0.06138 (11)	0.0347 (8)	
C12	0.52703 (19)	0.0688 (3)	0.06489 (10)	0.0301 (7)	
C13	0.56575 (19)	0.2511 (2)	0.09612 (10)	0.0296 (7)	
C14	0.6371 (2)	0.2861 (3)	0.12889 (12)	0.0420 (9)	
C15	0.7460 (3)	0.4299 (4)	0.14264 (16)	0.0771 (14)	
H15A	0.7656	0.3726	0.1654	0.093*	
H15B	0.7944	0.4544	0.1241	0.093*	
C16	0.7102 (3)	0.5323 (4)	0.16631 (17)	0.0867 (16)	
H16A	0.6913	0.5892	0.1437	0.130*	
H16B	0.7526	0.5678	0.1858	0.130*	
H16C	0.6629	0.5076	0.1850	0.130*	
C17	0.5822 (2)	0.2525 (2)	0.04197 (10)	0.0296 (7)	
C18	0.6762 (2)	0.2567 (3)	0.02697 (11)	0.0391 (8)	
C19	0.8066 (2)	0.1494 (4)	0.02685 (19)	0.0847 (16)	
H19A	0.8121	0.1722	-0.0056	0.102*	
H19B	0.8237	0.0671	0.0296	0.102*	
C20	0.8641 (3)	0.2246 (4)	0.05570 (17)	0.0871 (16)	
H20A	0.8512	0.3068	0.0505	0.131*	
H20B	0.9220	0.2094	0.0471	0.131*	
H20C	0.8561	0.2060	0.0880	0.131*	
N1	0.05846 (16)	0.1358 (2)	0.22301 (8)	0.0332 (7)	
H1	0.0555	0.1110	0.2513	0.040*	
N2	0.04634 (17)	0.1327 (2)	0.14663 (8)	0.0367 (7)	
H2	0.0368	0.1053	0.1192	0.044*	
N3	0.02328 (17)	0.3466 (2)	0.22512 (9)	0.0389 (7)	
H3	0.0148	0.3650	0.2538	0.047*	
N4	0.00082 (17)	0.3390 (2)	0.14951 (9)	0.0377 (7)	
H4	-0.0254	0.3495	0.1236	0.045*	
N5	0.49893 (16)	0.3389 (2)	0.09994 (9)	0.0361 (7)	
Н5	0.4665	0.3463	0.1238	0.043*	
N6	0.53960 (17)	0.3573 (2)	0.02693 (9)	0.0375 (7)	
H6	0.5428	0.3853	-0.0009	0.045*	
N7	0.54036 (16)	0.1301 (2)	0.10487 (8)	0.0341 (7)	
H7	0.5344	0.1003	0.1322	0.041*	
N8	0.54353 (16)	0.1409 (2)	0.02829 (8)	0.0334 (7)	

H8	0.5323	0.1225	-0.0001	0.040*
01	0.02606 (15)	-0.04068 (18)	0.18682 (7)	0.0417 (6)
O2	-0.06149 (16)	0.48901 (19)	0.19152 (7)	0.0439 (6)
O3	0.18984 (19)	0.3785 (3)	0.24553 (10)	0.0773 (9)
O4	0.22562 (15)	0.2053 (3)	0.21459 (10)	0.0647 (8)
O5	0.17702 (17)	0.3914 (2)	0.14036 (9)	0.0619 (8)
O6	0.1614 (3)	0.2417 (2)	0.09063 (13)	0.1284 (18)
O7	0.45447 (16)	0.50226 (19)	0.05859 (8)	0.0480 (7)
O8	0.50442 (15)	-0.03524 (18)	0.06237 (7)	0.0413 (6)
O9	0.6426 (2)	0.2439 (2)	0.16701 (10)	0.0796 (10)
O10	0.68161 (17)	0.3742 (2)	0.11215 (9)	0.0650 (8)
O11	0.70598 (17)	0.3366 (2)	0.00593 (10)	0.0706 (9)
O12	0.71686 (14)	0.1612 (2)	0.04116 (10)	0.0616 (8)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0399 (18)	0.0296 (18)	0.0250 (18)	-0.0046 (15)	0.0030 (14)	0.0008 (14)
C2	0.048 (2)	0.0267 (18)	0.0273 (18)	-0.0013 (15)	0.0036 (15)	-0.0002 (14)
C3	0.0477 (19)	0.0223 (16)	0.0212 (17)	-0.0032 (14)	0.0050 (14)	-0.0020 (13)
C4	0.054 (2)	0.049 (2)	0.034 (2)	-0.011 (2)	-0.0007 (17)	0.0040 (18)
C5	0.036 (3)	0.051 (5)	0.056 (4)	-0.007 (3)	-0.010 (3)	-0.007 (4)
C6	0.032 (4)	0.059 (6)	0.099 (6)	-0.007 (3)	-0.006 (4)	-0.025 (5)
C5'	0.098 (15)	0.050 (12)	0.098 (14)	-0.022 (11)	-0.021 (11)	0.007 (11)
C6'	0.16 (2)	0.080 (18)	0.14 (2)	-0.066 (16)	0.005 (16)	-0.046 (18)
C7	0.0505 (19)	0.0201 (16)	0.0237 (18)	-0.0023 (14)	0.0048 (14)	0.0012 (13)
C8	0.080 (3)	0.0243 (18)	0.047 (2)	-0.0075 (18)	0.028 (2)	0.0016 (17)
C9	0.093 (3)	0.084 (3)	0.074 (3)	-0.043 (3)	0.018 (3)	0.020 (3)
C10	0.116 (4)	0.104 (4)	0.070 (3)	-0.037 (3)	0.014 (3)	0.021 (3)
C11	0.051 (2)	0.0272 (18)	0.0262 (18)	0.0004 (16)	-0.0031 (15)	-0.0002 (14)
C12	0.0422 (18)	0.0244 (17)	0.0236 (17)	0.0001 (14)	0.0001 (14)	-0.0021 (13)
C13	0.0467 (19)	0.0227 (16)	0.0193 (16)	0.0016 (14)	-0.0029 (14)	0.0000 (13)
C14	0.068 (2)	0.0253 (17)	0.033 (2)	0.0008 (17)	-0.0117 (18)	-0.0028 (16)
C15	0.075 (3)	0.091 (3)	0.065 (3)	-0.045 (3)	-0.010 (2)	-0.018 (3)
C16	0.126 (5)	0.066 (3)	0.068 (3)	-0.024 (3)	-0.025 (3)	0.002 (3)
C17	0.0462 (18)	0.0217 (16)	0.0209 (17)	-0.0002 (14)	-0.0021 (14)	-0.0014 (12)
C18	0.051 (2)	0.036 (2)	0.030 (2)	-0.0069 (17)	0.0047 (16)	-0.0019 (16)
C19	0.055 (3)	0.075 (3)	0.124 (4)	0.008 (2)	0.019 (3)	-0.028 (3)
C20	0.054 (3)	0.119 (4)	0.088 (4)	-0.010 (3)	0.007 (2)	-0.002 (3)
N1	0.0568 (17)	0.0260 (14)	0.0167 (13)	-0.0072 (12)	0.0020 (12)	0.0029 (11)
N2	0.0675 (19)	0.0236 (14)	0.0190 (14)	-0.0060 (13)	0.0017 (13)	-0.0022 (11)
N3	0.0638 (18)	0.0330 (16)	0.0200 (15)	0.0150 (14)	0.0035 (13)	-0.0003 (12)
N4	0.0609 (18)	0.0311 (15)	0.0210 (14)	0.0071 (13)	-0.0028 (13)	-0.0015 (12)
N5	0.0539 (17)	0.0299 (15)	0.0244 (15)	0.0095 (13)	0.0050 (12)	0.0032 (12)
N6	0.0602 (18)	0.0292 (15)	0.0231 (15)	0.0072 (13)	0.0018 (13)	0.0023 (12)
N7	0.0615 (18)	0.0248 (14)	0.0160 (13)	-0.0035 (13)	-0.0016 (12)	0.0017 (11)
N8	0.0534 (17)	0.0297 (14)	0.0170 (13)	-0.0078 (12)	-0.0035 (12)	-0.0005 (11)
01	0.0726 (17)	0.0228 (12)	0.0297 (13)	-0.0122 (11)	0.0029 (11)	0.0000 (10)

O2	0.0629 (16)	0.0333 (13)	0.0355 (14)	0.0145 (12)	0.0033 (11)	-0.0008 (10)
O3	0.098 (2)	0.0696 (19)	0.065 (2)	-0.0339 (17)	-0.0148 (17)	-0.0141 (17)
O4	0.0439 (15)	0.079 (2)	0.071 (2)	0.0037 (15)	-0.0027 (14)	-0.0057 (17)
O5	0.0844 (19)	0.0537 (16)	0.0475 (16)	-0.0306 (14)	0.0233 (14)	0.0021 (13)
O6	0.202 (4)	0.067 (2)	0.117 (3)	-0.056 (2)	0.124 (3)	-0.054 (2)
O7	0.0780 (18)	0.0339 (14)	0.0320 (13)	0.0195 (13)	-0.0011 (12)	0.0031 (11)
08	0.0710 (16)	0.0255 (13)	0.0273 (12)	-0.0093 (11)	-0.0039 (11)	-0.0007 (10)
09	0.133 (3)	0.0509 (17)	0.0548 (19)	-0.0262 (17)	-0.0532 (19)	0.0164 (14)
O10	0.0821 (19)	0.0751 (18)	0.0378 (15)	-0.0376 (16)	-0.0125 (14)	0.0008 (14)
011	0.0692 (19)	0.083 (2)	0.0593 (19)	-0.0114 (16)	0.0114 (15)	0.0253 (16)
012	0.0470 (16)	0.0454 (15)	0.092 (2)	0.0059 (12)	0.0072 (14)	-0.0009 (15)

Geometric parameters (Å, °)

C1—O1	1.229 (4)	C11—N6	1.352 (4)
C1—N2	1.352 (4)	C11—N5	1.357 (4)
C1—N1	1.356 (4)	C12—O8	1.228 (3)
C2—O2	1.220 (4)	C12—N8	1.355 (4)
C2—N3	1.358 (4)	C12—N7	1.357 (4)
C2—N4	1.362 (4)	C13—N7	1.444 (3)
C3—N3	1.433 (4)	C13—N5	1.449 (4)
C3—N1	1.443 (3)	C13—C14	1.519 (4)
C3—C4	1.541 (5)	C13—C17	1.578 (4)
С3—С7	1.592 (4)	C14—O9	1.198 (4)
C4—O3	1.191 (4)	C14—O10	1.308 (4)
C4—O4	1.307 (4)	C15—C16	1.455 (6)
C5—O4	1.497 (5)	C15—O10	1.481 (4)
C5—C6	1.502 (7)	C15—H15A	0.9700
C5—H5A	0.9700	C15—H15B	0.9700
С5—Н5В	0.9700	C16—H16A	0.9600
С6—Н6А	0.9600	C16—H16B	0.9600
С6—Н6В	0.9600	C16—H16C	0.9600
С6—Н6С	0.9600	C17—N6	1.426 (4)
C5'—O4	1.469 (9)	C17—N8	1.452 (3)
C5'—C6'	1.527 (10)	C17—C18	1.543 (5)
C5'—H5'1	0.9700	C18—O11	1.182 (4)
С5'—Н5'2	0.9700	C18—O12	1.317 (4)
С6'—Н6'1	0.9600	C19—O12	1.478 (4)
С6'—Н6'2	0.9600	C19—C20	1.493 (6)
С6'—Н6'3	0.9600	C19—H19A	0.9700
C7—N2	1.440 (3)	C19—H19B	0.9700
C7—N4	1.442 (4)	C20—H20A	0.9600
С7—С8	1.529 (4)	C20—H20B	0.9600
C8—O6	1.179 (4)	C20—H20C	0.9600
C8—O5	1.314 (4)	N1—H1	0.8600
C9—C10	1.448 (6)	N2—H2	0.8600
С9—О5	1.488 (4)	N3—H3	0.8600
С9—Н9А	0.9700	N4—H4	0.8600
С9—Н9В	0.9700	N5—H5	0.8600

C10—H10A	0.9600	N6—H6	0.8600
C10—H10B	0.9600	N7—H7	0.8600
C10—H10C	0.9600	N8—H8	0.8600
C11—O7	1.233 (4)		
01—C1—N2	125.2 (3)	O9—C14—O10	126.8 (3)
01—C1—N1	125.8 (3)	O9—C14—C13	121.2 (3)
N2—C1—N1	108.9 (3)	O10-C14-C13	111.5 (3)
O2—C2—N3	126.2 (3)	C16-C15-O10	110.3 (4)
O2—C2—N4	125.6 (3)	C16-C15-H15A	109.6
N3—C2—N4	108.2 (3)	O10-C15-H15A	109.6
N3—C3—N1	116.1 (3)	C16—C15—H15B	109.6
N3—C3—C4	109.7 (3)	O10-C15-H15B	109.6
N1—C3—C4	112.1 (3)	H15A—C15—H15B	108.1
N3—C3—C7	102.3 (2)	C15-C16-H16A	109.5
N1—C3—C7	101.7 (2)	C15—C16—H16B	109.5
C4—C3—C7	114.6 (2)	H16A—C16—H16B	109.5
O3—C4—O4	125.2 (4)	C15—C16—H16C	109.5
O3—C4—C3	123.9 (3)	H16A—C16—H16C	109.5
O4—C4—C3	110.8 (3)	H16B—C16—H16C	109.5
O4—C5—C6	105.5 (5)	N6—C17—N8	116.0 (2)
O4—C5—H5A	110.6	N6—C17—C18	110.0 (3)
С6—С5—Н5А	110.6	N8—C17—C18	110.7 (2)
O4—C5—H5B	110.6	N6—C17—C13	103.3 (2)
С6—С5—Н5В	110.6	N8—C17—C13	100.9 (2)
H5A—C5—H5B	108.8	C18—C17—C13	115.7 (2)
O4—C5'—C6'	108.3 (9)	O11—C18—O12	126.0 (3)
O4—C5'—H5'1	110.0	O11—C18—C17	123.2 (3)
C6'—C5'—H5'1	110.0	O12—C18—C17	110.9 (3)
O4—C5'—H5'2	110.0	O12—C19—C20	112.0 (4)
C6'—C5'—H5'2	110.0	O12—C19—H19A	109.2
H5'1—C5'—H5'2	108.4	С20—С19—Н19А	109.2
C5'—C6'—H6'1	109.5	O12—C19—H19B	109.2
C5'—C6'—H6'2	109.5	С20—С19—Н19В	109.2
H6'1—C6'—H6'2	109.5	H19A—C19—H19B	107.9
С5'—С6'—Н6'3	109.5	C19—C20—H20A	109.5
H6'1—C6'—H6'3	109.5	C19—C20—H20B	109.5
H6'2—C6'—H6'3	109.5	H20A—C20—H20B	109.5
N2	115.3 (3)	C19—C20—H20C	109.5
N2—C7—C8	110.3 (3)	H20A—C20—H20C	109.5
N4—C7—C8	108.2 (2)	H20B-C20-H20C	109.5
N2—C7—C3	102.8 (2)	C1—N1—C3	113.4 (2)
N4—C7—C3	102.2 (2)	C1—N1—H1	123.3
C8—C7—C3	118.1 (3)	C3—N1—H1	123.3
O6—C8—O5	126.2 (3)	C1—N2—C7	113.0 (2)
O6—C8—C7	122.6 (3)	C1—N2—H2	123.5
O5—C8—C7	111.0 (3)	C7—N2—H2	123.5
C10—C9—O5	108.6 (4)	C2—N3—C3	113.5 (2)
С10—С9—Н9А	110.0	C2—N3—H3	123.3
О5—С9—Н9А	110.0	C3—N3—H3	123.3

С10—С9—Н9В	110.0	C2—N4—C7	112.7 (3)
О5—С9—Н9В	110.0	C2—N4—H4	123.7
Н9А—С9—Н9В	108.4	C7—N4—H4	123.7
C9—C10—H10A	109.5	C11—N5—C13	112.0 (2)
C9—C10—H10B	109.5	C11—N5—H5	124.0
H10A—C10—H10B	109.5	C13—N5—H5	124.0
C9—C10—H10C	109.5	C11—N6—C17	112.3 (2)
H10A—C10—H10C	109.5	C11—N6—H6	123.9
H10B—C10—H10C	109.5	С17—N6—Н6	123.9
O7—C11—N6	125.7 (3)	C12—N7—C13	112.1 (2)
O7-C11-N5	125.4 (3)	C12—N7—H7	124.0
N6—C11—N5	108.9 (3)	C13—N7—H7	124.0
O8—C12—N8	125.7 (3)	C12—N8—C17	113.0 (2)
O8—C12—N7	125.5 (3)	C12—N8—H8	123.5
N8—C12—N7	108.8 (2)	C17—N8—H8	123.5
N7—C13—N5	115.5 (3)	C4—O4—C5'	138.1 (10)
N7—C13—C14	110.0 (2)	C4—O4—C5	111.0 (4)
N5-C13-C14	108.2 (2)	C5'—O4—C5	32.5 (7)
N7—C13—C17	103.1 (2)	C8—O5—C9	117.9 (3)
N5-C13-C17	100.8 (2)	C14—O10—C15	118.2 (3)
C14—C13—C17	119.2 (3)	C18—O12—C19	116.9 (3)
N3—C3—C4—O3	-4.5 (5)	C8—C7—N2—C1	128.3 (3)
N1—C3—C4—O3	-134.9 (3)	C3—C7—N2—C1	1.5 (3)
C7—C3—C4—O3	109.9 (4)	O2—C2—N3—C3	-170.9 (3)
N3—C3—C4—O4	179.0 (3)	N4—C2—N3—C3	9.1 (4)
N1-C3-C4-O4	48.6 (4)	N1—C3—N3—C2	-112.5 (3)
C7—C3—C4—O4	-66.6 (4)	C4—C3—N3—C2	119.2 (3)
N3—C3—C7—N2	-123.9 (2)	C7—C3—N3—C2	-2.8 (3)
N1—C3—C7—N2	-3.6 (3)	O2—C2—N4—C7	167.8 (3)
C4—C3—C7—N2	117.5 (3)	N3—C2—N4—C7	-12.1 (4)
N3—C3—C7—N4	-4.0 (3)	N2	120.5 (3)
N1—C3—C7—N4	116.3 (2)	C8—C7—N4—C2	-115.5 (3)
C4—C3—C7—N4	-122.6 (3)	C3—C7—N4—C2	9.8 (3)
N3—C3—C7—C8	114.5 (3)	O7-C11-N5-C13	-165.3 (3)
N1—C3—C7—C8	-125.2 (3)	N6-C11-N5-C13	13.4 (4)
C4—C3—C7—C8	-4.1 (4)	N7-C13-N5-C11	-127.2 (3)
N2C7C8O6	20.6 (5)	C14—C13—N5—C11	109.0 (3)
N4—C7—C8—O6	-106.4 (5)	C17-C13-N5-C11	-16.9 (3)
C3—C7—C8—O6	138.3 (4)	O7—C11—N6—C17	175.8 (3)
N2C7C8O5	-165.0 (3)	N5-C11-N6-C17	-2.9 (4)
N4—C7—C8—O5	68.0 (4)	N8—C17—N6—C11	101.9 (3)
C3—C7—C8—O5	-47.4 (4)	C18—C17—N6—C11	-131.5 (3)
N7-C13-C14-O9	-30.6 (4)	C13-C17-N6-C11	-7.4 (3)
N5-C13-C14-O9	96.5 (4)	O8—C12—N7—C13	-179.4 (3)
C17—C13—C14—O9	-149.3 (3)	N8—C12—N7—C13	1.2 (3)
N7—C13—C14—O10	157.0 (3)	N5-C13-N7-C12	99.5 (3)
N5-C13-C14-O10	-75.9 (3)	C14—C13—N7—C12	-137.6 (3)
C17—C13—C14—O10	38.3 (4)	C17—C13—N7—C12	-9.5 (3)
N7-C13-C17-N6	133.5 (2)	O8—C12—N8—C17	-170.5 (3)

N5-C13-C17-N6	13.9 (3)	N7-C12-N8-C17	8.9 (4)
C14—C13—C17—N6	-104.2 (3)	N6-C17-N8-C12	-124.7 (3)
N7-C13-C17-N8	13.3 (3)	C18—C17—N8—C12	109.1 (3)
N5-C13-C17-N8	-106.4 (2)	C13-C17-N8-C12	-13.9 (3)
C14—C13—C17—N8	135.5 (3)	O3—C4—O4—C5'	18.8 (11)
N7-C13-C17-C18	-106.2 (3)	C3—C4—O4—C5'	-164.8 (9)
N5-C13-C17-C18	134.2 (3)	O3—C4—O4—C5	-3.3 (6)
C14—C13—C17—C18	16.0 (4)	C3—C4—O4—C5	173.1 (4)
N6-C17-C18-O11	-0.3 (4)	C6'—C5'—O4—C4	-96 (2)
N8—C17—C18—O11	129.2 (3)	C6'—C5'—O4—C5	-55.2 (16)
C13-C17-C18-O11	-116.8 (4)	C6—C5—O4—C4	-160.8 (7)
N6-C17-C18-O12	179.1 (3)	C6—C5—O4—C5'	47.1 (14)
N8—C17—C18—O12	-51.4 (3)	O6—C8—O5—C9	-2.7 (7)
C13—C17—C18—O12	62.6 (3)	C7—C8—O5—C9	-176.8 (3)
O1-C1-N1-C3	175.7 (3)	C10-C9-O5-C8	84.3 (5)
N2-C1-N1-C3	-4.2 (4)	O9-C14-O10-C15	-0.1 (6)
N3—C3—N1—C1	114.9 (3)	C13-C14-O10-C15	171.7 (3)
C4—C3—N1—C1	-118.0 (3)	C16-C15-O10-C14	-94.1 (4)
C7—C3—N1—C1	4.8 (3)	O11-C18-O12-C19	-4.2 (5)
O1—C1—N2—C7	-178.5 (3)	C17-C18-O12-C19	176.4 (3)
N1—C1—N2—C7	1.4 (4)	C20-C19-O12-C18	78.4 (5)
N4—C7—N2—C1	-108.8 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1···O2 ⁱ	0.86	2.15	2.963 (3)	158
N2—H2···O7 ⁱⁱ	0.86	2.10	2.927 (3)	162
N3—H3···O1 ⁱⁱⁱ	0.86	2.11	2.937 (3)	161
N4—H4···O8 ^{iv}	0.86	2.21	2.879 (3)	134
N5—H5····O1 ^{iv}	0.86	2.22	2.870 (3)	133
N6—H6····O7 ^v	0.86	2.09	2.925 (3)	164
N7—H7···O2 ⁱⁱ	0.86	2.16	2.973 (3)	158
N8—H8···O8 ^{vi}	0.86	2.12	2.963 (3)	165
C16—H16C···O3 ^{vii}	0.96	2.51	3.087 (5)	119
C10—H10B…O11 ^v	0.96	2.32	3.162 (5)	146

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+1/2; (ii) -*x*+1/2, *y*-1/2, *z*; (iii) -*x*, *y*+1/2, -*z*+1/2; (iv) -*x*+1/2, *y*+1/2, *z*; (v) -*x*+1, -*y*+1, -*z*; (vi) -*x*+1, -*y*, -*z*; (vii) *x*+1/2, *y*, -*z*+1/2.

Fig. 2

R= -H, -CH₃, -Ph, -COO-*n*-C₃H₇, -COOC₂H₅,...

Fig. 4

